(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(s(X), c) →+ f(X, c)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [X / s(X)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)
Types:
f :: a:b:s:c → a:b:s:c → f
a :: a:b:s:c
b :: a:b:s:c
s :: a:b:s:c → a:b:s:c
c :: a:b:s:c
hole_f1_0 :: f
hole_a:b:s:c2_0 :: a:b:s:c
gen_a:b:s:c3_0 :: Nat → a:b:s:c
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
a,
a) →
f(
a,
b)
f(
a,
b) →
f(
s(
a),
c)
f(
s(
X),
c) →
f(
X,
c)
f(
c,
c) →
f(
a,
a)
Types:
f :: a:b:s:c → a:b:s:c → f
a :: a:b:s:c
b :: a:b:s:c
s :: a:b:s:c → a:b:s:c
c :: a:b:s:c
hole_f1_0 :: f
hole_a:b:s:c2_0 :: a:b:s:c
gen_a:b:s:c3_0 :: Nat → a:b:s:c
Generator Equations:
gen_a:b:s:c3_0(0) ⇔ c
gen_a:b:s:c3_0(+(x, 1)) ⇔ s(gen_a:b:s:c3_0(x))
The following defined symbols remain to be analysed:
f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_a:b:s:c3_0(
+(
1,
n5_0)),
gen_a:b:s:c3_0(
0)) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
f(gen_a:b:s:c3_0(+(1, 0)), gen_a:b:s:c3_0(0))
Induction Step:
f(gen_a:b:s:c3_0(+(1, +(n5_0, 1))), gen_a:b:s:c3_0(0)) →RΩ(1)
f(gen_a:b:s:c3_0(+(1, n5_0)), c) →IH
*4_0
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
a,
a) →
f(
a,
b)
f(
a,
b) →
f(
s(
a),
c)
f(
s(
X),
c) →
f(
X,
c)
f(
c,
c) →
f(
a,
a)
Types:
f :: a:b:s:c → a:b:s:c → f
a :: a:b:s:c
b :: a:b:s:c
s :: a:b:s:c → a:b:s:c
c :: a:b:s:c
hole_f1_0 :: f
hole_a:b:s:c2_0 :: a:b:s:c
gen_a:b:s:c3_0 :: Nat → a:b:s:c
Lemmas:
f(gen_a:b:s:c3_0(+(1, n5_0)), gen_a:b:s:c3_0(0)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_a:b:s:c3_0(0) ⇔ c
gen_a:b:s:c3_0(+(x, 1)) ⇔ s(gen_a:b:s:c3_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_a:b:s:c3_0(+(1, n5_0)), gen_a:b:s:c3_0(0)) → *4_0, rt ∈ Ω(n50)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
f(
a,
a) →
f(
a,
b)
f(
a,
b) →
f(
s(
a),
c)
f(
s(
X),
c) →
f(
X,
c)
f(
c,
c) →
f(
a,
a)
Types:
f :: a:b:s:c → a:b:s:c → f
a :: a:b:s:c
b :: a:b:s:c
s :: a:b:s:c → a:b:s:c
c :: a:b:s:c
hole_f1_0 :: f
hole_a:b:s:c2_0 :: a:b:s:c
gen_a:b:s:c3_0 :: Nat → a:b:s:c
Lemmas:
f(gen_a:b:s:c3_0(+(1, n5_0)), gen_a:b:s:c3_0(0)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_a:b:s:c3_0(0) ⇔ c
gen_a:b:s:c3_0(+(x, 1)) ⇔ s(gen_a:b:s:c3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_a:b:s:c3_0(+(1, n5_0)), gen_a:b:s:c3_0(0)) → *4_0, rt ∈ Ω(n50)
(16) BOUNDS(n^1, INF)